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The Energy—Momentum Tensor in Yang—Mills Field
Theory and Its Uniqueness
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The uniqueness of the energy-momentum tensor in Yang-Mills field theory is
established under general conditions.

1. INTRODUCTION

Let P(M, G, II) be a principle fiber bundle with base space M, total
space P and structural group G. Let n =dim M, r=dim G. For «, 8 non-
negative integers we define V= T3(LG), the space of a-contravariant,
B-covariant tensors on the Lie algebra LG of G and p: G- GL(V) by

p=Ad® - -QAIRAIR®- - -®Ad, (1)
where
Ad(a)(n)(X.)=n[Ad(a)(X.)] (2)

and Ad is the adjoint representation of G. Let z be the local chart around
e in G given by exp.

A gauge field is a connection form @ on P. If U is an open set in M
then a gauge is a pair (U, o) where o: U - P is a smooth section of II. For
a gauge (U, o) let o, = c*w. Then w, is an LG-valued 1-form defined on
U. If (x, V) is a local chart in M such that U V # & then

0, = (A7 dx')e,

(latin letters run from 1 to n, Greek letters run from 1 to r, and we use the
summation convention). The A} are called the gauge potentials of o associ-
ated to (U, o), (x, V), and e,.
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If (U, a) and (U’, ¢') are two gauges such that o(m) = o'(m) for some
m in Un U’ then there is a smooth function : U U'> G such that
o-y=0c"in Un U'. It is well known that

Ja a —1 4B a"bB

where * :=z” o ; 15 dz® are the left invariant 1-forms generated by the
dual basis of e,, and Ad(a)e, =Ad%(a)e,.

We say that T is a gauge tensor field of type (V, r, s, w) if it gives for
every gauge (U, o) a V-valued relative tensor field T, of type (r, s, w)
defined over U. We say that T is a gauge tensor field of type (p; r, 5, w) if
furthermore

T, =p(y HT, inUnU (4)
where p is given by (1).
The coeflicients of the curvature form, defined as
Fj=A}— A} +CBVABA" (5)

where Cj, are the structure constants associated to e,, are the compgnents
of a gauge tensor F of type (Ad; 0,2, 0).

If we have a Lorentz metric g; on M, the gauge-covariant derivative
of F is defined as

F:;"h.: F;,h— zjr F ijh+F ngAﬁ (6)

where T'§, are the Christoffel symbols.
In Yang-Mills field theory the role played by the energy-momentum
tensor

% =g Cop (F*"F¥ ~1g"Fi, F**) (7

where C,5 = CJ, Cj, are the coeflicients of the Cartan-Killing form, is well
known. It has the following properties:

(a) T'=T" ()
(b) Whenever the Yang-Mills equations
CozBFaij ;=0 (9)

are satisfied, the divergence of T?, i.e. T” ;, vanishes by virtue of the identity
(Rund, 1982)

T%);=Vg Cs FF'Fy, (10)

The purpose of this paper is to establish that T7 is essentially the
unique solution to the following problem. To find all gauge tensors BY for
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which (i) BY is a concomitant of g,,, AZ and A%, i.e.,
BY = BY(ga; AZ; Al (11)
(i) BY=B" (12)
(iii) BY); vanishes whenever (9) is valid in the sense that
BY) = Ce HP'F* (13)

where H? = H”"(g,,.; Af; AR) is a gauge tensor.
If H = C,gF?", then (13) means

BY; = HF* (14)

This is a natural extension of the same problem in electromagnetism
treated by Lovelock (1974).

2. THE UNIQUENESS OF THE ENERGY-MOMENTUM TENSOR

Since BY is a gauge tensor field, then from the replacement theorem
(Horndeski, 1981) we have

B (g Al Api) = BY(g; 0; —3F i) = BY(gui; Fi) (15)
and BY is also a gauge tensor field. By (15) we see that
dBY 4BY
=( 16
aAZk nth ( )

Since, for a fixed gauge, BY is a tensorial concomitant it must satisfy
certain invariance identities (Rund, 1966). One set of them is a consequence
of (16) and the other set is

aBY aBY

~—— g —— Fr,=—8.BY -5, B" 17
98nb §ha ™ 0AL, " (1n
The identity (14), written out in full, is
aBY aB” aBY
Gt w ARt T At ThBY T B
ag;,k ghk’ aA h aA bk
Jr ls':I:.s*rz_}:erlsci FI:I+F CB'yAB] (18)
Differentiating with respect to g, gives
chj ab nycj ibpca j cb jc pab
27—+ g®BY 4 g"B 4 glaBP _ gi°B

a.gab
= H[-g“g"F;,— g"g"“Fr.+g*’g“F§.]
- HZg“g"F& — H? g g"F?2, (19)



1168 Noriega and Schifini

while differentiation of (18) with respect to Ay, gives

9BV  gBY
aA;t,k 0AY;

=—Hig"-Hig" +2H]g" (20)

Interchanging j with k and j with i on (20) we obtain

aB* ap* o o y
sar Toaz — Heg" - Hig"+2H " (21)
L J h,i
and
aB® 3B" o ) ) o
=-H¥g"-Hig"-Hig" +2H%g" (22)

ARk 0AR;
Adding (20) and (21) and subtracting (22) we have

gB"

2
dA};

:—H},i(glh—H'{;gkh"l_zH]mhglk_ngglh_Hl:gjh

+2HSg" + Hyg"+ Hig" —2H g* (23)

Interchanging h with i in (23), adding it to (23), and contracting with
g we deduce

(n=2)(H§+HZ)+2g " Hilgy =0 (24)
Contracting (24) with g,; we see that
4n-1)H{gu=0 (25)
From (24) and (25) we deduce that if n>2 then
HY=-H¥ (26)
and so (23) reduces to
3BY y L . " o
AT Hig"+Hyg"+Hg"+ Hlg"+ Hig" (27)
Contracting (27) with g, we obtain
\ ., 1 oBY
H;= n-1 E;‘E Bikn

and then it is easy to deduce that
HY(gm; AR hi) = HZ(ghk; 0; —3F)
= H,%(g; Fii) (28)
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Differentiating (27) with respect to Afs we have

8szj
aAz,i aAes

Hg 7,8 kh+ jh rshlk H:f ;Sglh

+HY B g+ H g™ (29)
From (29) we deduce
Hlj r,s kh_I_H]: Bsglk+H2’: g] +H§h ij+HZi;;‘§sgjk
=ngzgkr+Hrhl sk Hskhxg]r
+Hg g+ Hy'o'g™ (30)
Contracting (30) with g, we obtain
(n_l)HlJrs HS] r:+Hjé-.;1+Hskh1gkth
+Hkr hlgkhgsj+1_1'rsjl (31)
Contracting (31) with g, it is easy to deduce that
HZ B grs - angr (32)

where

1 S 4
Aap =; HBk 2 8is8kh = Apa (33)

Replacing (32) in (31) yields
(n 1) yrs 51 rz ersx__i_Hg_Ll
+Aag (g"g”—g"gs’) (34)

The left-hand side of (34) is invariant when we interchange i with j
and r with s by virtue of (26) and (28). Then we deduce

HY 5+ HpS = Hps/ + H (35)

Interchanging j with s in (35), interchanging j with r in (35), and
adding the three equations we obtain

Hy% = HEY (36)
Interchanging r with j in (34) and adding it to (34) we have

ij.r,s ir;j,s /\ﬂ is _r. ir s ij_ sr
HEg+HIy == [2g"g" - g"g" ~g" - 2"¢"] (37)
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Using (37) we can reduce (34) to

3 , N 3 s
(n 1)Hl] s 3HS_] ”—*‘/\aﬂ[ 1 4 rS_glrgS]+(1_n—1) nggJT]

(38)
From (38) it is easy to obtain, for n>2 and n #4 that
Hs_] ri_ 043 (gts v —-g gTS) (39)
Differentiating (39) with respect to A}, yields
1 9A
sjyni hk aB is rs
HEG =3n_13A7, (g"g" - ) (40)

Since the left-hand side of (40) is invariant when we interchange h
with r, k with i, and « with v, then

dA a, zs 1) i _rs i hs
aAB(g 7 - g8 )—aAa (g%g" —ghg™) (41)
hk r,i
Contracting (41) with g;.g,; we deduce
9Aap
Ak

and so, for a fixed gauge, A,; is a scalar concomitant of g,.. Then (Lovelock,
1969) A.g is a real number for each a, 8. Now using (28) and integrating
(39) we have for n>2 and n # 4 that

. A .

s ap Fos (42

T n-12 (42)

It remains to prove (42) for the case of physical interest, i.e., n =4. To

achieve that we remark that (38) reduces to

3Hy s 3HS] ”+’\aB (gygrs gir 's) (43)
From (37) and (43) it follows easily that
S_} rl+H.§‘J rl—-zAaB(gJ,—gSI'—g gl’S) (44)
Now using (36) we have
HZ ,tr:%s }_;k_ HZ Z,k;;ts — HZ;T;S;g,k (45)

Differentiating (44) with respect to A}, we see that

2 Da8 (gugr _ grg) (46)

HZ;T,S;h’k_}_HlJ rs;hk _
B v Ba ¥ 3 v
AN«
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By (45), the left-hand side of (46) is invariant when we interchange r
with h and s with k. Then

Rap (gikgih — ghgit) (47)

a/3 is sy
(g"¢"-¢"¢") = aAIs

aA’
Contracting (47) with g;g;; it is easy to obtain
Oep _
dA]
and so again A,z is a real number for each a, 8. Then by (46)

Hij;r,s;hk+Hy r,s; hk O (48)

afB v

By (26), (28), (45), and (48) we see that HZ;;’S"ﬁ"‘ is skew symmetric
in all its latin indices. Since n =4, it follows that
HEzshk = (49)

af’y

Then H% % = HY 3’ (gi), and then it is known (Lovelock, 1969) that

4
Hlj rs_A ij rs+/\ ir +A is +— yrs’ 50
1872 878" +A38"g" 7z (50)

ijrs

where €’ are the Levi-Civita symbols. Using a coordinate system where
(g;) =diag(—1, -1, —1, 1) it follows from (26) that A;=A,=0and A, = —A;.
Now using (37) it follows that A,=—A,g/3. Then

iji;rs /\a is_ jr ir_Jjs
HEg=="(g"e" ~¢"8") (51)
Integrating (51) through the use of (28) it follows that
ij ’\aﬂ Bji
H] = T F¥ (52)

which is (42) for the case n=4.
Now it is standard to modify Lovelock’s proof (Lovelock, 1974) to
conclude the following.

Theorem. For n>2 the only gauge tensor which satisfies (11), (12),
and (13) is

B = Ay (F™"F& g F5 F**) + ag?
where a is a real number and'A,xﬁ satisfies

ngA,ga + CgaA’yﬁ = 0
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