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The Energy-Momentum Tensor in Yang-Mills Field 
Theory and Its Uniqueness 
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The uniqueness of the energy-momentum tensor in Yang-Mills field theory is 
established under general conditions. 

1. I N T R O D U C T I O N  

Let P(M,  G, I I )  be a p r inc ip le  fiber b u n d l e  with base  space M, total  
space  P and  s t ructura l  g roup  G. Let n = d im M, r = d im G. Fo r  a , /3  non-  
negat ive  integers  we define V:= T~(LG) ,  the  space  of  ~ -con t r ava r i an t ,  
/3-covar iant  tensors  on the Lie a lgebra  L G  of  G and  p: G ~  G L ( V )  by  

p : =  A d |  �9 . | 1 7 4 1 7 4  �9 . |  (1) 

where  

Ad(a ) (*? ) (Xe)  := ~ / [Ad(a) (X~)]  (2) 

and  A d  is the ad jo in t  r ep resen ta t ion  o f  G. Let  z be the  local  char t  a r o u n d  
e in G given by  exp.  

A gauge field is a connec t ion  form r9 on P. I f  U is an open  set in M 
then  a gauge is a pa i r  (U, o-) where  o-: U--> P is a smoo th  sect ion o f  II.  F o r  
a gauge ( U, o-) let r9~ := o'*~o. Then oJ~ is an L G - v a l u e d  1-form def ined on 
U. I f  (x, V) is a local  char t  in M such that  U c~ V # Q then 

oJ~ = (A? dxi)e~ 

( lat in let ters  run  f rom 1 to n, G r e e k  letters run f rom 1 to r, and  we use the  
s u m m a t i o n  convent ion) .  The  A7 are ca l led  the  gauge potentials of  ~o associ-  
a ted  to ( U, o'),  (x, V), and  e~. 
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If ( U, ~)  and ( U', tr') are two gauges such that or(m) = o-'(m) for some 
m in Uc~ U' then there is a smooth function ~O: U ~  U ' ~  G such that 
or. 0 = or' in U c~ U'. It is well known that 

oO ' 
AI '~ = A d ~  o O - ' A f  + I~ o ~ Ox ~ (3) 

where 0 t3 := z t3 o q,; l~ dz t3 are the left invariant 1-forms generated by the 
dual basis of  e~, and Ad(a)e~ =Ad~(a)e~.  

We say that T is a gauge  tensor f ield o f  type (V; r, s, w) if it gives for 
every gauge ( U, tr) a V-valued relative tensor field To of type (r, s, w) 
defined over U. We say that T is a gauge tensor field of type (p;  r, s, w) if 
furthermore 

T~,=p(q~- l )T~  in Uc~ U' (4) 

where p is given by (1). 
The coefficients of the curvature form, defined as 

c t .  ~ ce F o .= Aj, i - A i a +  r ~  a t 3 a v  �9 ~ ,~ ,1 ,  ,~j (5) 

where C~r are the structure constants associated to e~, are the components 
of a gauge tensor F of type (Ad; 0, 2, 0). 

If we have a Lorentz metric g0 on M, the gauge-covariant derivative 
of F is defined as 

FOIl h . -  FO, h _ F~Fkh ,~ k ~, ,~ . . . .  - F i k F j h q - F o C ~ v A  h (6) 

where Fkh are the Christoffel symbols. 
In Yang-Mills field theory the role played by the energy-momentum 

tensor 

T o = x /gC,~  ( F'~irF~ j - l g ~  F ~hs) (7) 

3/ e where C ~  := C ~  C~r are the coefficients of the Cartan-Killing form, is well 
known. It has the following properties: 

(a) T o = T j' (8) 

(b) Whenever the Yang-Mills equations 

C,~t~F'~~ ~ = 0 (9) 

are satisfied, the divergence of T ~ i.e., Til~ vanishes by virtue of the identity 
(Rund, 1982) 

T~ = x/ g C,~oF~'"F'~J,II j (10) 

The purpose of this paper is to establish that T ~ is essentially the 
unique solution to the following problem. To find all gauge tensors B ~ for 
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which (i) B 'j is a concomitant of gab, A:  and 
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Aa~b, i.e., 

B 'j = BO(gab; A~; A~,b) (1 l) 

(ii) B u = B  j~ (12) 

(iii) B~ vanishes whenever (9) is valid in the sense that 

BUil~ = C~t3Ht~JrF~i~ll~ (13) 

where H t3j~ = H~Jr(ghk; A~;  Ah~k) is a gauge tensor. 
If  H ~  = C~gF ~j~, then (13) means 

BOll i = H ~ F ~ l i i  (14) 

This is a natural extension of the same problem in electromagnetism 
treated by Lovelock (1974). 

2. THE UNIQUENESS OF THE ENERGY-MOMENTUM TENSOR 

Since B ~j is a gauge tensor field, then from the replacement theorem 
(Horndeski, 1981) we have 

B~J(ghk; A~; Ah,k)-= BiJ(ghk; 0; 1 = B1 (ghk; Fhk) (15) 

and B~ is also a gauge tensor field. By (15) we see that 

aB i; aB ~ 

oA~,g J-O---~hk, h = O (161 

Since, for a fixed gauge, B ~j is a tensorial concomitant it must satisfy 
certain invariance identities (Rund, 19661. One set of them is a consequence 
of (16) and the other set is 

OB ~ OB~J 
2 - -  gh~ - - - -  F;~ = - 6 ' o B  bj - 6Jo B ib (17) 

Oghb OAh~,b 

The identity (14), written out in full, is 

O B____~ ~j O B ~ O B ~J ot  i sj 
Oghk ghk, i + ~ Ah~,i + ~ Ah ki + F~i B + FJi B i~ 

OAh, k ' 

a a k a k "y a f l  = H~gis[Fsr ,  i -  F k r F s i -  FskFri + FsrC~vA~ ] (18) 

Differentiating with respect to gob,~ gives 

aB a 
2 + gabBCJ -I- gJbBca d- gjaBCb -- gjCBab 

Og~b 

L l - j r r  c a  k b  r - a  c b  k a  r a  ~ a b  k c  ~ c t  "l 
= r ' l a L - - g  g l~kr--g  g r g ~ •  g r k r  j 

-- H ~ g  ~ gkbF:k -- H ~ g  ~ gk~F~k (19) 
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while differentiation of (18) with respect to  Ah~,ki gives 

OB o OB ~ 
- -  ~ = - H ~ g  'h - H ~ g  kh + 2 H ~ g  'h (20) 
aA~,k aA~,, 

Interchanging j with k and j with i on (20) we obtain 

and 

OB ik OB Jk 
- - +  . . . .  n ~ g i h - - n ~ i g 3 h  + 2Hkh g is (21) 
OA~ d OA~ 

OB ji OB ki 
..~k*h --iS kh --0 k h + 2 H ~ g k  (22) - - - t -  = - r t , , g '  - ~ g  - r i n g  

OA~ OA~ ,k ,j 

Adding (20) and (21) and subtracting (22) we have 

OB ki 
2 oa~,~ = --H~gih - H~gkh + 2H~g~k -- H~Sg~h -- H~gjh  

+ 2H~hg ~ + H ~ g  *h + H ~ g  kh - 2 H 2 g  Jt" (23) 

Interchanging h with i in (23), adding it to (23), and contracting with 
gjh we deduce 

( n _ 2 ) ( H ~ i +  ,k ki jh H ~ ) + 2 g  H~gjh =0  

Contracting (24) with gki we see that 

4( n --1) Hki gki = O 

From (24) and (25) we deduce that if n > 2 then 

= 

and so (23) reduces to 

O B kj = H ] g  kh + H C g  ik + H ~ g  jh + Hkhg 0 + Hhig jk 
aA~,, 

Contracting (27) with gkh we obtain 

1 OB ks 
I-It= 

n - 1 aAh~,i  gkh 

and then it is easy to deduce that 
ij ~ . ce = H~(ghk; 0; --~Fhk) H~,(ghk; Ah,  A h ,  k )  q 1 ,~ 

ij , oe 
= H I  a ( g h k ,  F h k )  

(24) 

(25) 

(26) 

(27) 

(28) 
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Differentiating (27) with respect to A ~ r,s we have 

o 2 B k J  

OAh~i OA~ 

From (29) we deduce 

g i j . r s  k h - -  ~ j h ; r , s ~ i k ~ i k ; r , s ~ j h  

. . k h ; r , s  ij - -  f_Thi;r,s~.jk 
+ t l a  eg t . ~ a  e s  
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(29) 

1 r r s k ; h  i 
A ~ B  = - -  l ~ e  ~' g i s g k h  = A e a  (33) 

n 

Replacing (32) in (31) yields 

n ij;r,s __ 12lsj;r.i ~ ~ j r ; s , i  ~ rs;j,i - 1 ) H a  e - " ~  ~ - " e  ~ - H ~  

+ Aar (g"gJ~ - g~g'J) (34) 

The left-hand side of  (34) is invariant when we interchange i with j 
and r with s by virtue of  (26) and (28). Then we deduce 

H s j ;  r,i ..;. 12.[jr; s,i __ [..~ri; s,j  -4- [..[is; r,j a - " e  ~ - " ~  a - - - ~  ~ (35) 

Interchanging j with s in (35), interchanging j with r in (35), and 
adding the three equations we obtain 

sr ;j, i j i  ; s, r H e  a = H e ~  (36) 

Interchanging r with j in (34) and adding it to (34) we have 

ij" r s ir;j,s - -  A a ~  . . . . . . . .  Ha'~ +Ha e - n - 1  [2g'~g~S _g,rgSS _gV _gVg~] (37) 

where 

HO-.rs k h - - ~ j h ; r ,  s o i k ~ i k ; r , s ~ j h - -  r r k h ' r s  i j - -  . T h i ' r s i k  d ~ g  

r r s j ' h i  k r - -  E I j r ' h i  s k - -  r r s k ' h i l r  =nr tr l# '~'g t l ~ # ' ~ "  V 

~ T r k r ' h i  s j - -  r T r s ' h i ~ k  
n r  '2 g - m e ' ; ; '  g (30) 

Contracting (30) with gkh we obtain 

n - 1 ] / - / / J ; r ' s  - -  l ~ s j ; r ' i ~  ~ l j r ; s ' i - -  TTsk;h, i  i r  

_~ Elkr;h , i  sj r r s ' j i  
J ~  a g k h g  + H r  (31) 

Contracting (31) with gis it is easy to deduce that 

ij; r,s H a  ~ g~s = h,~eg dr (32) 
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Using (37) we can reduce (34) to 

( n _  ~, rao; a t.t~J;,,~_~ [ 3 . . . .  . . . .  ( 1 3 ) ]  

(38) 
From (38) it is easy to obtain, for n > 2 and n # 4 that 

H s j ; r , i =  )tab . . . .  
~ n - I  ( g , ~ g r j _ g V g ~ )  (39) 

Differentiating (39) with respect to AhV, k yields 

H s j ; r , i ; h , k  __ 1 aA,,~ . . . .  

t~ ~ z, - 3n  - 10A ' [ , k  (g,~gr~ __gVg,~) (40) 

Since the left-hand side of (40) is invariant when we interchange h 
with r, k with i, and ~ with y, then 

oa~,k  (g'~ g "~ . ( g  ks ghj _ g kjghs) (41) 

Contracting (41) with g~grj we deduce 

0A=I3 = 0 
OA'[,k 

and so, for a fixed gauge, a~t3 is a scalar concomitant of ghk. Then (Lovelock, 
1969) a~t~ is a real number for each a,/3. Now using (28) and integrating 
(39) we have for n > 2 and n # 4 that 

H ~ =  a~t3 F ~j~ (42) 
n - 1 2  

It remains to prove (42) for the case of physical interest, i.e., n = 4. To 
achieve that we remark that (38) reduces to 

t.riJ;r,s ' 2 1 L l s j ; r , i  �9 - ~  /3 = - - , - - / 3  ~ +A,~13(giJg rs _ g i r g j ~ )  ( 4 3 )  

From (37) and (43) it follows easily that 
s j .  r i  T _ l s j ; r , i  _ _  " H ~ ' ~  + ~ .~  ~ - 2 A ~ t 3 ( g d ' g ~ - g V g ' ~  ) (44) 

Now using (36) we have 

H i J ; r , s ; h , k  _ _  1 L l i j ; h , k ; r , s  = T . . l i j ; r , s ; h , k  ~/3 7 - " ~  ~ . . ~  ~ (45) 

Differentiating (44) with respect to A~,k we see that 

HO;r,~;h,k ~ r..r,j;~,~;h, k 20A ,~o  (g'~gd,__g'rgd~) (46) 
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By (45), the left-hand side of (46) is invariant when we interchange r 
with h and s with k. Then 

OA,~r (g, ,gj ,  _ gi, gjS) = OA,~r (g,kgjh _ g,hgjk) 

OA "~ k , OA~,~ 
(47) 

Contracting (47) with gjrgis it is easy to obtain 

O A~/3 = 0 
OA~,k 

and so again A.~ is a real number for each ~,/3. Then by (46) 

H i j ; r , s ; h , k  ~_ T . l i j ; r , s ; h , k  . ~  ~ - , , ~ .  ~ = 0  ( 4 8 )  

T,.lij; r,s ; h , k  By (26), (28), (45), and (48) we see that . .~  ~ v is skew symmetric 
in all its latin indices. Since n = 4, it follows that 

H i j ; r , s ; h , k  /3 v = 0 ( 4 9 )  

g . l i j ; r , s  T r i j ; r , s [  Then 1 . ,  ~ = rl~ ~ ~ghk), and then it is known (Lovelock, 1969) that 

ij; r,s . . . .  is "r 4 qrs H ~  , = AlgYgr~ + A2g'r~" + A3g gJ +~gg e , (50) 

where e ors are the Levi-Civitfi symbols. Using a coordinate system where 
(go) = diag(-1 ,  -1 ,  -1 ,  1) it follows from (26) that A~ = Aa = 0 and A2 = -A3. 
Now using (37) it follows that A2 = - A ~ / 3 .  Then 

HiJ;r,s _ )ka# (g  iSgjr _ g irgjS) (51) 
~ - - 3  

Integrating (51) through the use of  (28) it follows that 

H ~  = A.~ Foj, (52) 
3 

which is (42) for the case n = 4. 
Now it is standard to modify Lovelock's proof  (Lovelock, 1974) to 

conclude the following. 

Theorem.  For n > 2 the only gauge tensor which satisfies (11), (12), 
and (13) is 

- -  / ~ c e i r ~ f l j  1 i j ~ c ~  ~ h s  ~ - -  B ~ J = A , ~ L r  r ~  - ~ g  r h s l  "~ ) - r a g  ~ 

where a is a real number and A ~  satisfies 

C o~,Ap,~ + Co~. A~,, = 0 
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